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Abstract

Some researchers and policymakers posit that climate change should increase
city growth and urbanization as rising temperatures make rural livelihoods
precarious, while others argue that climate change might trap rural households
who cannot afford to migrate because of increasing poverty. Existing empirical
evidence on the link between climate and urbanization is inconclusive. This
paper exploits novel data mapping city growth for 7,000 cities in 108 low-
to middle-income countries across 23 years to provide new evidence on the
relationship between drought and urbanization. Cities experience large and
persistent declines in growth rates after major drought events: after 11 years,
cities are 0.7 percent smaller compared to a drought-free counterfactual. I show
that fully accounting for dynamic effects is essential to correctly understand the
relationship between drought and city growth and that a positive correlation
between drought and contemporaneous city growth is misleading. Consistent
with models that envision a drought-migration poverty trap, the negative effects
on urbanization are more pronounced for the poorest, and most agricultural
countries.
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1 Introduction

Climate scientists predict that the frequency, intensity, and severity of droughts will

increase with climate change (IPCC, 2022). How this affects the growth of cities is

unknown, presenting a major problem for urban planners and policymakers who must

make infrastructure and planning decisions with time horizons of several decades.

Researchers and policymakers alike claim that more extreme weather events will lead

to an increase in migration, projecting the number of internal climate migrants in

developing countries to reach 200 million by 2050 (Clement et al., 2021), many of

whom are likely to move to cities (Cattaneo & Peri, 2016). But adverse weather events

might also decrease migration, especially for the poorest and agricultural households

who are liquidity constrained, because it wipes out the funds needed to migrate

(Bryan, Chowdhury, & Mobarak, 2014; Kleemans, 2023). Our understanding of this

relationship has been constrained by the absence of disaggregated or high-frequency

data on city growth, necessary to trace out the effects of specific weather events over

time at lower spatial scales.

In this paper, I address these challenges by first assembling data on the annual

growth of cities—as measured by city footprint, the horizontal built-up area—for

7,000 cities in 108 low- to middle-income countries, where the effects of droughts are

likely to be most salient. I then combine these data with historical weather data to

measure the effect of drought exposure on the growth of cities over the course of 23

years.

I study the reduced-form relationship between droughts in city hinterlands and city

growth with an event study-distributed lag model framework, using it to trace out the

dynamic response of cities following exposure to a drought. Fully accounting for these

dynamic effects is critical for multiple reasons. Omitting the lagged effects of weather

events could introduce bias in estimated coefficients, because of serial correlation in

weather variables (Nath, Ramey, & Klenow, 2023; Newell, Prest, & Sexton, 2021).

Moreover, the impact of weather shocks can be the result of temporal displacement,

where effects observed in one time period are completely reversed in a later period,

as highlighted by e.g. Deschenes and Moretti (2009) and Hsiang (2016). Lastly,

estimating the dynamic effects allows me to both recover the cumulative impact of a
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drought and determine whether this impact persists in the long run.

I find that droughts have a large, negative, and persistent impact on the growth of

cities. I trace the effects on city growth up to 11 years after drought exposure to cities

and their hinterlands. I find that cities continue to diverge from their counterfactual

growth trajectory over the course of seven years following a major drought, equivalent

to a 1-in-50-year event. After this time cities remain 1.2 percent smaller compared

to a drought-free counterfactual. While the effect fades over time, city growth does

not recover completely and remains 0.7 percent smaller 11 years after a drought.

The median city expands by 24 percent over the course of 11 years. Hence, a major

drought effectively undoes around 3 percent of this total growth. While less intense

droughts also have large effects after seven years, they are less persistent.

These results show that major droughts have long-term effects on the growth of

cities, implying that a model that only accounts for contemporary effects is mis-

leading. Indeed, the contemporaneous correlation between drought and city growth

is weakly positive. However, these effects are overturned when accounting for the

lagged effects. The results are robust to a battery of specification tests and alterna-

tive approaches to estimation and inference, including randomization-based inference

based on reshuffling observed weather conditions across time, and showing that the

impact is not the result of spatial spillovers from other cities.

Studies have highlighted that urbanization has progressed differently across con-

tinents and that climate change could have heterogenous effects on urbanization,1

suggesting the impact of droughts could vary across geographical regions.2 I run

sub-sample analyses by continent. I find the largest and most persistent effects in

Africa. After 11 years, the estimated effect of a major drought is 2 percent, which

is substantially larger than the average effect. For Asia, comprising a large share of

the sample, the results are similar to the average effects.3 I find that the impact of

droughts is statistically insignificant in North America, South America, and Oceania.

The heterogeneity across continents could suggest a larger impact on cities in

poorer countries. Poorer countries have been found to be more vulnerable to disasters

1See, e.g., Henderson and Kriticos (2018) and Henderson and Turner (2020) for a review.
2Barrios, Bertinelli, and Strobl (2006) and Henderson, Storeygard, and Deichmann (2017).
3About two-thirds of the cities in the sample are located in Asia.
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and weather shocks (Dell, Jones, & Olken, 2012; Kahn, 2005). I find that the impact

of droughts is most pronounced in low and lower-middle-income countries, while the

impact is statistically insignificant in middle-income countries, the richest countries

in the sample. Low-income countries are more agriculturally dependent, and the

agricultural sector is particularly vulnerable to weather shocks (Schlenker & Roberts,

2009). I therefore investigate the role of agriculture, as measured by the national

share of employment in agriculture, dividing the sample into low, middle, and high

shares. Cities in countries with the highest share of agricultural employment remain

3.5 percent smaller 11 years after a major drought. I find no impact for the cities in

countries with the lowest share.

What do these results imply for the growth trajectory of cities? The median

expansion for a city in poorer countries is 23 percent, a major drought undoes 10

percent of that growth, or the equivalent of a whole year. For cities in the most

agricultural countries, it undoes the equivalent of almost two years of growth.

My results have two important implications. The first is that rather than inducing

growth, droughts inhibit the growth of cities, which is contrary to the working hy-

pothesis of many policymakers and researchers. This pattern holds across large parts

of the sample, which together represent around 84 percent of the world’s population.

As the size of a city’s footprint is highly correlated with its population,4 my results

also suggest that droughts decrease rather than induce city population growth. More-

over, city population growth is often driven by rural-to-urban migration (Brueckner

& Lall, 2015), calling into question the often-made assumption about adverse weather

shocks, such as droughts, driving rural-to-urban migration, or urbanization.

The larger and more persistent effect of drought exposure on cities in poorer and

more agricultural countries is consistent with models which envision environment-

migration poverty traps. These models predict that adverse weather shocks could

effectively trap already resource-poor people in agriculture and further poverty since

shocks worsen their liquidity constraints and reduce their ability to pay for migration

costs (Cattaneo & Peri, 2016; Mayda, 2010). This chain of events could contribute to

explaining the persistent gaps between rural and urban sectors in developing coun-

4The correlation between city population and footprint is high, ranging between 0.75 and 0.85.
The results of these analyses are shown in Figure C1.1.
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tries, where the higher overall amenities and income enjoyed by urban dwellers leads

Henderson and Turner (2020) to question why urbanization is not happening at an

even higher rate.

This paper relates to three strands of the literature. First, I build on a vast and

still-growing literature that evaluates the socio-economic effects of climate change.

For example, Dell, Jones, and Olken (2012), Hsiang and Jina (2014), and Nath,

Ramey, and Klenow (2023) study the impact of temperature and tropical cyclones on

GDP. Deschênes and Greenstone (2007) and Schlenker and Roberts (2009) examine

the impact of temperature on agricultural yields, and Kahn (2005) study how natural

disasters, for example floods, affect mortality.

My findings connect specifically to the literature on the links between climate

change and urbanization. This literature has studied how long-run changes in the

climate have affected the shares of urban population in Sub-Saharan African districts

(Henderson, Storeygard, & Deichmann, 2017) or studied the effect of yearly weather

variation at the country-level (Barrios, Bertinelli, & Strobl, 2006; Castells-Quintana,

Krause, & McDermott, 2021). Contemporaneous work studies the effect on built-up

area using global grid cells as the level of analysis (Chlouba, Mukim, & Zaveri, 2023).

I add to this literature by extending the city-level evidence vastly, to five different

continents.5 Using city-level data, I study disaggregated weather shocks, which are

important since there can be considerable variation in weather within larger adminis-

trative units, and even internal migration is largely local. Additionally, in contrast to

the previous literature, I trace out the dynamic (and cumulative) effects of weather

shocks and show that they are both persistent and different from contemporaneous

correlations.

The climate and urbanization literature is closely related to the literature on

climate change and migration, especially internal migration, an already vast litera-

ture. Recent reviews include Hoffmann, Šedová, and Vinke (2021) and Kaczan and

Orgill-Meyer (2020). Research in this literature focusing on internal migration has

largely studied single countries (Bohra-Mishra, Oppenheimer, & Hsiang, 2014; Gray

5Henderson, Storeygard, and Deichmann (2017) uses a city-level analysis to examine the impact
of rainfall on city income, and Castells-Quintana, Krause, and McDermott (2021) limit their city
sample to the largest city in each country.
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& Mueller, 2012; Kleemans & Magruder, 2018), primarily using survey data. I build

on this literature by showing that the effect holds across a large share of the world,

and that the impact of droughts on city growth is strongest in poor and agricultural

countries, results that are consistent with environment-migration poverty traps.

The paper proceeds as follows: Section 2 summarizes the data. Section 3 describes

the empirical approach, section 4 presents the results, and section 5 presents the

heterogeneity results. Section 6 concludes.

2 Data

I analyze the effects of drought on city growth using a city-level panel dataset, which I

assemble from multiple sources. Below I summarize the main sources of data, variable

construction, and how I assemble the panel data.

Countries I restrict my sample to include low- to middle-income countries, using

the definition employed by the World Bank. I also make restrictions on a geographical

basis and exclude all European countries from my analysis. In addition, I exclude

small island states because data on drought conditions are missing, and jurisdictions

that belong to high-income nations, e.g. the Dutch Caribbeans and Overseas France.6

City footprint I use the World Settlement Footprint (WSF) Evolution data (Mar-

concini et al., 2021) to calculate yearly city footprint growth measure. The data is

provided in a raster format where the resolution of each pixel is approximately 30

meters around the equator. Pixels are classified as built-up or non-built, where the

value of each pixel represents the year in which the pixel was classified as built-up,

between 1985 and 2015. The main input of the classification is imagery from the

Landsat satellites, where the spectral signature of the images is used to distinguish

built-up area from non-built area. Because the availability of Landsat images varies

across time, and between parts of the world, there are missing observations in the

6This includes departments and territories outside of mainland France, including Réunion and
Guadeloupe.
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data. Therefore, I exclude cities that have missing data in any year starting from

1992, the year in which the data becomes more consistent.7

To calculate the yearly city footprint growth, I use the WSF data to record the

year in which each pixel was classified as built-up within city perimeters and subse-

quently calculate the sum of these pixels. To define cities, I use metropolitan area

boundaries as defined by Moreno-Monroy, Schiavina, and Veneri (2021), called Func-

tional Urban Areas (FUA). They represent estimated commuting zones of urban areas

with a population of at least 50,000 in 2015. Using this definition, I avoid limiting

the analysis to the political boundaries of a city, as these can both change over time

and be endogenously determined. The associated data is provided by Schiavina et al.

(2019). Figure ?? showcases an example of the FUA boundary and city growth in

Jaipur, India.

An advantage of using these data is that the measures should be unaffected by

differences in e.g. institutional quality, or definitions of what a city is, across coun-

tries.8 In addition, the quality of the data should not be affected by the economic

and political conditions in a country, which could introduce endogeneity (Hsiang &

Jina, 2014).

Drought conditions I use the standardized precipitation evapotranspiration index

(SPEI) (Vicente-Serrano, Begueria, & Lopez-Moreno, 2010) to construct a binary

variable measuring whether a drought event has taken place in each year for cities

in my sample. The weekly SPEI data is from Vicente-Serrano et al. (2022) and is

provided in a raster format, with a resolution of 0.5 degrees (around 55 kilometers

around the equator). The values of the index are standardized at the pixel-level with

a mean of zero, and calibrated using data between 1979 and 2020. Hence, the values

of the SPEI are interpreted as deviations from a long-term trend and do not capture

a location’s climate. For example, locations with drier climates will not have higher

average SPEI values. As such, the values are comparable across different geographical

7This is also noted in Rentschler et al. (2023), who show that input data quality is worse before
1992.

8Administrative data may in some cases be manipulated, for example, because of political incen-
tives, which has been highlighted for certain census data in Nigeria (Okafor, Adeleke, & Oparac,
2007).
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regions.

The SPEI is an estimate of the climatic water balance in locations worldwide, and

a combination of precipitation and temperature data is used. An advantage of the

SPEI compared to other drought indices (e.g., the standardized precipitation index)

is the inclusion of temperature, which has a documented effect on agricultural yields

(Schlenker & Roberts, 2009).

The SPEI data from Vicente-Serrano et al. (2022) is calculated using ERA5 Cli-

mate Reanalysis data and is recommended by the authors over previous versions

(SPEI-Base), which is calculated using weather station data. Using weather station

data can be problematic in many settings (Auffhammer et al., 2013; Harari & Ferrara,

2018). The coverage of weather station data is sparse in many regions of the world,

including Africa, which necessitates a large amount of spatial interpolation to create

data that is disaggregated to a fine enough level. This procedure may introduce arti-

ficial spatial correlation (Harari & Ferrara, 2018). If weather station coverage is not

consistent across time, estimates may be biased (Auffhammer et al., 2013). Schultz

and Mankin (2019) show that weather station coverage is affected by civil conflict,

which may introduce measurement error. The dataset they study is from the Univer-

sity of East Anglia’s Climatic Research Unit (CRU), which is used to compute the

original SPEI-Base dataset (Vicente-Serrano, Begueria, & Lopez-Moreno, 2010).

Growing season data I use data from Ortiz-Bobea et al. (2021) to define the

agricultural growing seasons in the data. The authors use the normalized difference

vegetation index (NDVI) data to calculate the month during which there is the most

available biomass as a proxy for the growing season. I follow their approach and use

the two months preceding and after this ’greenest’ month as the main growing season.

Income and agricultural employment data I use data from the World Devel-

opment Indicators of the World Bank (World Bank, 2023) to calculate the average

agricultural employment and GDP per capita, at the country-level. I also use data

from the United Nations Statistics Division (UNSD) to identify sub-regions, which

can be sub-continental (for example Africa is divided into North Africa and Sub-

Saharan Africa) or supra-continental (e.g. Latin America and the Caribbean). A
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map of the sub-regions can be found in Figure C1.2a.

The sample of countries used in this paper covers most low- to middle-income

countries in the world. However, there is a large variation between these countries,

for example in terms of income and levels of urbanization. Of the cities included in

the sample, the median city had a population of around 139,000 in 2015 (the last year

of the panel). The median growth rate of a city’s horizontal footprint was around 2

percent per year. Summary statistics of the data can be found in Table D1.1. These

are shown both for the whole sample and separately by continent.

The distribution of yearly city footprint growth rates is found in Figure C1.3.

These are shown using the entire sample (panel A), by income categories (panel B),

and by agricultural employment (panel C). As evidenced by the distributions, growth

rates do not vary substantially across these categories.

3 Empirical strategy

This section details the empirical strategy of this paper. I begin by explaining the

drought exposure variable. I then describe the specification in more detail. I also

examine the potential pitfalls in omitting the lagged terms of drought, or weather

shocks in general.

3.1 Drought exposure

I define exposure to a drought event using the SPEI index. To my knowledge, there

are no established best practices in how a drought episode should be defined. While a

large number of studies in economics make use of the SPEI to study various outcomes,

the definition of a drought event varies.9

I construct the binary drought exposure variable as follows. First, I use the

classifications from Wang et al. (2014) to define drought events of different intensities.

9Imbert and Ulyssea (2022) use crop value-weighted indices to study internal migration, Harari
and Ferrara (2018) averages the values of drought indices over a dominant crop’s growing season to
study the impact on conflict, and Albert, Bustos, and Ponticelli (2021) use values above the mean
to study internal migration and capital reallocation.
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I aggregate the weekly SPEI data to the monthly level by taking the average. I then

calculate a city-specific SPEI value by taking the area-weighted average of the values

within a 100-kilometer buffer around each city. Lastly, I dichotomize the drought

exposure measure, where the indicator Dit takes on the value 1 if the value in a year t

in a city i is 1, 1.5, or 2 SD above the long-run city SPEI average. I vary the threshold

to make sure the results are not driven by a specific cut-off and to understand whether

the intensity of droughts matters for city growth. The following equation describes

how drought exposure is defined:

Di,t =

1 if Sit ≥ S̄i + λ,

0 otherwise.
(1)

where S̄i is the 40-year average of the SPEI in a city and its hinterlands. λ represents

the cutoffs multiplied with the standard deviation of the SPEI within a city and its

hinterlands. Hence, for each year t, if the SPEI value for city i is higher than the

mean and the standard deviation, I define it as a drought year. The cutoffs are used

to characterize droughts as moderate (1 SD), severe (1.5 SD), or extreme (2 SD),

following Wang et al. (2014). Accordingly, more intense droughts are less frequent. A

1 SD drought is, in expectation, a 1-in-6-year event, a 1.5 SD drought is a 1-in-16-year

event, and a 2 SD drought is a 1-in-50-year event. Figure C1.4 shows the share of

cities that are exposed to 1.5 and 2 SD droughts in any given year between 1980 and

2020.

I define the catchment area of a city using a 100-kilometer buffer (while keeping

the buffer within country borders) since migration to a large extent is internal in

developing countries (Jónsson, 2010), and decreases with distance (Bryan & Morten,

2019). This captures both the effect of droughts on the city as well as its rural

hinterlands, where droughts are likely to be more salient because rural areas are more

dependent on agriculture. Since i) the broader climate impacts literature has shown

that weather shocks have larger effects on the agricultural sector (Burke, Hsiang,

& Miguel, 2015; Zappalà, 2023), and ii) agriculture is the main economic sector in

rural areas, I assume that the relevant temporal dimension is the agricultural growing

season. Following Ortiz-Bobea et al. (2021), I approximate the main growing season
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for each pixel in the SPEI data using the month for which the NDVI is the highest.

I then aggregate the SPEI values over the two preceding months, the highest value

month, and the succeeding two months. Figures C1.5-C1.8 show the spatial variation

in the growing season SPEI average, by year.

3.2 Specification

To estimate the causal effects of local droughts on city growth, I adopt an event

study-distributed lag model approach,10 where I model city growth rates (the first

difference of the logarithm of city footprint) as a function of drought exposure Di,t,

out to a maximum lag length k. I estimate the following model using ordinary least

squares:

∆ln(Yi,t) =
11∑

l=−5

γlDi,t−l + αi + δst + εd,t (2)

where cities are indexed by i and year by t. The parameters of interest are the

coefficients γ.

This approach follows the general framework for identifying the effects of weather

shocks (Deschênes & Greenstone, 2007; Hsiang, 2016). I include city fixed effects, αi,

to account for time-invariant properties of cities, which includes, for example, insti-

tutions or geography, and could lead to differences in average growth rates between

cities. Since the outcome is defined in growth terms, it is the first derivative of city

footprint. Hence, including city fixed effects is equivalent to controlling for a linear

trend in city size.

I include subregion-by-year fixed effects, δst, to account for common nonlinear

trends and shocks at the UNSD subregion-level.11 This non-parametrically adjusts

for all factors that are common across cities within a subregion by year, such as crop

price levels. However, as highlighted in Deschênes and Greenstone (2007), if there

exist local segmented markets, prices will not be held constant using this approach.

10The parameters recovered from an event-study specification and distributed lag models are
identical under certain assumptions, as discussed in Schmidheiny and Siegloch (2023)

11Subregions are large; for example, Africa is divided into North Africa and Sub-Saharan Africa.
A map of the subregions is found in Figure C1.2a.
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While this could potentially be accounted for by introducing more spatially fine fixed

effects, for example, country-by-year fixed effects, a downside is that finer fixed effects

absorb a great deal of the variation in weather and climate (Fisher et al., 2012).

I assume that the disturbance term, εit, may exhibit both spatial correlation and

autocorrelation within a city over time. To account for this possibility, I estimate

standard errors clustered by ADM1-by-year and cities. ADM1 denotes the first ad-

ministrative division level in each country, for example, states in India or provinces

in Indonesia. A map delineating these first administrative levels is found in Figure

C1.9b.

Conditional on each city’s average climate and trend in drought conditions, which

is absorbed by city fixed effects and the time fixed effects, the timing and intensity

of drought exposure should be unpredictable and stochastic across years. Hence,

the specified model allows me to assume that drought exposure, Dit, is plausibly

exogenous and uncorrelated with other unobserved factors that could influence city

growth. As an additional test to verify these assumptions, I include five years of leads

in the specification. This is added as a placebo test (Hsiang, 2016), and to rule out

potential anticipatory effects (Schmidheiny & Siegloch, 2023). For these assumptions

to be plausible, the coefficients of the leads should be close to zero.

Interpretation of the coefficients The effect of interest in this paper is the long-

run effects of droughts on the growth of cities, i.e. the dynamic (or cumulative)

treatment effects.12 The coefficients γ capture the incremental, or marginal, changes

in the dynamic treatment effects. The dynamic effects can be calculated by summa-

rizing the marginal effects over multiple years. Let βl be the dynamic treatment effect

up to k years after drought exposure:

βk =
k∑

l=0

γl (3)

In the interest of brevity and clarity, I only report the dynamic treatment effects,

12Dynamic treatment effects, cumulative treatment effects, cumulative effects, and intertemporal
treatment effects are used interchangeably in the economics literature (see, e.g., de Chaisemartin
and d’Haultfoeuille (2022)).
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βk throughout the paper, and do not report the estimates of γl.
13

There is an explicit choice to be made in how many lags and leads should be

included in the model. This choice reflects an assumption on when effects have been

fully materialized. To the best of my knowledge, there is no empirical precedent or

theoretical model to directly inform this choice with regard to the relationship between

city growth and droughts, or other climate indicators more generally. Therefore, I

choose the number of lags based on the available data, where eleven is roughly half

the length of the outcome data (city growth). For the number of leads, I choose the

maximum number available in the drought conditions data which does not change the

effective sample for estimation. Finally, I make two additional assumptions. First,

the effects are assumed to be additively separable, i.e., the effect of drought exposure

in each year is independent of the effect in a previous year. Second, the treatment

effects are homogenous across cohorts and years. I explore the second assumption

in a robustness test and show that the results do not appear substantially different

when accounting for heterogenous treatment effects.

Short vs. long-run effects The empirical modeling of the relationship between

city growth and droughts is not obvious, since the functional form has little precedent

in the literature. However, some insights can be gained from the climate impacts

literature. The dynamic effects of climate indicators or weather shocks are important

in understanding the true effects. As highlighted in Hsiang (2016), weather shocks

can result in temporal displacement effects, where a shock in period t brings an

event that would otherwise occur in a future time period, e.g. t + j, forward in

time. Deschênes and Greenstone (2007) illustrate this phenomenon by showing that

a substantial number of deaths seemingly related to heat would have taken place in

the near future, even if a heat wave had not occurred. If that were the case in this

paper, the dynamic treatment effect as expressed in Equation 3 would be equal to

zero.

In this setting, it is plausible that the effects could take time to materialize.

City footprint expands through the construction of new built-up areas. While this

13The marginal effect, γl can be recovered from the dynamic treatment effects, since βk=l =
βl−1 + γl.
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construction could occur at a faster pace in developing countries, where there is often

a lack of urban planning measures or the institutional capacity to enforce them, it

will not be instantaneous. For this reason, lagged effects are of interest to capture

the true effect of droughts on city growth.

Previous research has emphasized that climate indicators often exhibit consid-

erable serial correlation (Nath, Ramey, & Klenow, 2023; Newell, Prest, & Sexton,

2021). Because of this, including a sufficient number of lags of the climate indicators

or weather events is important in order to recover unbiased causal estimates of their

effects.

4 Results

In this section, I first examine the effects of drought exposure on city growth for

the entire sample and establish that the effect is indeed substantial, statistically

significant, and persistent. I then explore whether there is a significant impact in

geographical sub-samples, more specifically, by continent.

4.1 Main results

The results from estimating Equation 2 using the full sample of cities in the panel are

presented in Figure 1 (see Table ?? for the point estimates of each lag). The figure

presents the long-run effects of drought exposure on city growth relative to a drought-

free city counterfactual. Each graph in the figure shows the dynamic treatment effects,

βl, from five years before (year −5) up to 11 years after drought exposure. The

estimates are the result of using the three different intensities of drought exposure in

separate analyses, where 1 SD represents the least intense drought measure, and 2

SD the most intense drought.

Following exposure to a drought, cities remain smaller for up to 11 years after

exposure, compared to a scenario with no drought exposure. However, the result

varies substantially across drought intensities. The results from estimating Equation

2 using the least intense measure of drought (1 SD) do not show either statistically

or economically significant results over the course of 11 years. More extreme drought
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(a) 1 SD.
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(b) 1.5 SD.
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(c) 2 SD.
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(d) 1, 1.5, 2 SD.

Figure 1: Estimates show the dynamic treatment effects of drought on city size. Panels
a)-c) show the effects by drought intensity. Panel d) shows the analyses of a)-c) in the same
plot. City and subregion-by-year fixed effects are included in all estimations. Standard
errors are clustered by ADM1-by-year and city. Lines show the point estimates for each lag
(or lead) and the shaded regions show 95% confidence intervals. Normalized to the year
before drought (βt=−1 = 0).

events, i.e., using a 1.5 or 2 SD cut-off, have statistically significant effects on city

growth and are also larger in magnitude.

Focusing on the 1.5 and 2 SD measures, it is also evident that they show different
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patterns of persistence. While the 1.5 SD events are estimated to decrease city size

by 0.5 percent 7 years after the exposure, this effect dissipates substantially over the

course of the effect window and seems to revert back to trend after 11 years. The

pattern is similar for 2 SD events, but the estimated effects are almost twice as large

in terms of magnitude. After 7 years, the effect is 1.2 percent - this effect decreases

somewhat 11 years after but does not entirely dissipate, although the confidence

intervals become wider.

The fact that results differ considerably across drought intensity also suggests

that there may be some degree of non-linearity in the effects of droughts on city

growth. This might be explained by the in-sample probability of droughts, which

differ depending on severity. Droughts which occur as often as every 5-6 years could be

easier to cope with, while shocks which happen once every 15-50 years likely represent

events that are both more damaging to agricultural production and unexpected.

4.2 Robustness of the main results

In order to ensure the robustness of the results described above, I perform a number of

robustness tests. These include a randomization test, changing the main specification,

using alternative statistical inference adjustments, and using alternative estimators.

Randomization inference test I use randomization inference tests to understand

how likely it is that my estimated effects are observed by chance, in the spirit of Fisher

(1935). I randomize drought conditions by shuffling years while keeping the cross-

section constant, maintaining the spatial correlation across the sample intact (Heß,

2017). I then compare the point estimate β7, which I recover from the true data to the

distribution of point estimates recovered from the randomized placebo assignments.

The results of this exercise are shown in Figure C1.10. While the results are weaker for

the 1.5 SD droughts, with a p-value slightly above 0.1, the 2 SD is highly unlikely to

be observed by chance, with a p-value far below 0.05. Hence, the results are unlikely

to be spurious.

Alternative non-parametric time controls I replace the subregion-by-year fixed

effects with intermediate regions-by-year, a more disaggregated definition of a region,
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to verify that the results are not driven by the choice of fixed effects. I show that the

results are insensitive to changing the specification to include these finer-scaled fixed

effects, as they remain almost identical to the results using subregion-by-year fixed

effects. The results can be found in Figure C1.11a.

Influential observations I investigate whether extreme values affect the results.

The results remain very similar if I winsorize city growth at the 1st and 99th per-

centiles. The results are found in Figure C1.11b.

Alternative standard errors In the main specification, Equation 2, I control for

spatial correlation by clustering at ADM1-by-year. I show that the results remain

unchanged when accounting for spatial correlation in the residuals using a different

approach, by estimating the standard errors using Conley (1999). I vary the cut-

off between 250 and 500 kilometers. In these specifications, I also allow for serial

correlation up to 20 years using Newey andWest (1986) standard errors. The resulting

confidence intervals are similar to my main specification, as shown in Figure C1.12.

Alternative SPEI measure The SPEI can be calculated using different time

lengths. In my main specification, I use SPEI-3, i.e. the SPEI is calculated us-

ing the water balance from the three previous months. I show that the results are

not substantially different when instead choosing another time period, using SPEI-6,

which uses the six previous months, and construct the drought exposure measures

using the same approach as previously. This is the preferred time scale of Harari and

Ferrara (2018), who argue that it captures the effect on agriculture. Since the esti-

mates are not substantially different from using SPEI-3, this suggests that the precise

time length chosen for the SPEI values does not substantially affect the results.

As described in Section 3, I calculate the drought variable over the agricultural

growing season (which is approximated following Ortiz-Bobea et al. (2021)). I verify

that the results hold when calculating the drought measure using the entire calendar

year. The results do not change drastically - the one important difference is that the

effects of a 2 SD are somewhat smaller after 11 years, at 0.5 percent (compared to

0.7 percent in the main analysis). The results can be found in Figure C1.13.
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Spatial spillovers I assess whether spatial spillovers across cities drive the results

by estimating a spatial lag model. The spatial lag model, incorporates the effect

of drought events within pre-defined annuli from the centroid of each city, following

the procedure outlined in, e.g., Hsiang and Jina (2014). City i’s growth is modeled

as a function of drought exposure within 100 kilometers as in Equation 2 and also

includes all temporal lags of neighbors j whose centroids fall within concentric annuli

(around i) with 100-kilometer increments. The results show very little evidence of

spatial spillovers, as the growth in city i is not affected by droughts in neighboring

cities j: the point estimates are close to zero and are statistically insignificant. The

spatial lag regression model is described further in Appendix B, and the results can

be found in Figure C1.14.

Lag structure I examine whether the lag length k changes the results by estimating

the model in Equation 2, and varying the lag length, so that k = {3, ..., 10}. Each

regression includes five leads, as in the original specification. The pattern of the

result is remarkably stable across the number of included lags. The point estimate

at, e.g., lag 7 is almost identical regardless of whether 7 or 11 lags are included in

the regression. Hence, I conclude that the choice of the number of included lags does

not meaningfully change the estimates and results. The results of this exercise are

found in Figure C1.15. The results are presented omitting the confidence intervals,

including only the point estimates.

Auto-regressive lag model The main specification does not explicitly control

for potential serial correlation in the outcome variable. If there is a strong serial

correlation in the dependent variable, the estimates may be biased, as argued by

Nath, Ramey, and Klenow (2023). I amend the main specification in Equation 2

to include one or two lagged terms of the dependent variable. The main difference

compared to the regressions without any autoregressive controls is that the point

estimates are somewhat larger, and the results, especially for the 1.5 SD measure,

dissipate less towards lag 11. As such, the main conclusions remain unchanged. The

specification is detailed in Appendix B, and the results are shown in Figure C1.16.
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Local projections Local projections are frequently used to estimate impulse re-

sponse functions in time series (Jordà, 2005). Local projections has also been used

to identify causal dynamic treatment effects (Miller, 2023), for example in Tran and

Wilson (2020) to study the local effects of disasters. Colmer, Evans, and Shimshack

(2023) argue that ”under plausible conditions, the local projections estimator is the

most consistent for identifying the dynamic effects of repeat transitory shocks”. I

amend Equation 2 to a local projections framework. I limit the exercise to estimat-

ing the effect of the most intense droughts, 2 SD. I find that the estimated effects

are somewhat larger than those estimated using OLS (the main specification), and

confidence intervals are smaller, especially toward the last lags. The specification is

detailed in Appendix B, and the results are found in Figure C1.17a.

Heterogenous treatment effects The recent literature on heterogeneous treat-

ment effects has shown that traditional estimators used in the broader event study

and difference-in-differences empirical framework can be problematic if treatment ef-

fects are heterogenous. To ensure my results are robust to these concerns, I use the

newly developed estimator from de Chaisemartin and d’Haultfoeuille (2022) and show

that the results are in line with those recovered using my main specification. The

main difference is that estimates are somewhat smaller until lag 8 – after 11 years, the

point estimate is 0.7 percent, which is similar to the main results. This suggests that

heterogenous treatment effects are not a main threat to identification. The results

can be found in Figure C1.17b.

4.3 Results by continent

Having established that droughts have a substantial and persistent impact on cities

over the course of several years, I examine whether this pattern is driven by certain

regions in the sample. Urbanization patterns vary across countries in the sample.

There are stark differences between, for example, South America, where the popula-

tion is largely urban at the beginning of the sample period, and Africa. It is also the

case that while the countries in the sample are low-income compared to the world

average, there are some countries that are much richer than others.
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I turn to examining whether the impact of drought is the same across the different

continents in my sample, or whether specific continents drive the average effects. I

run sub-sample analyses for each continent at a time, still using the specification in

Equation 2. Since Africa and Asia have subregions within the continent, subregion-

by-year fixed effects will be included, whereas for North America, and South America,

the subregion is larger than these continents. Hence, the analysis for these countries

includes a year fixed effect. I omit results from Oceania since the sample is very

small.14

I find that the results vary substantially across continents. The results of the

separate analyses for Asia and Africa are found in Figure 2. The pattern of the

results for Asia is strikingly similar to those using the entire sample, which is plausibly

explained by the fact that cities in Asia represent around two-thirds of the cities in the

entire sample. The largest difference is that the estimates are less persistent - there

is a marked reversion to zero 11 years after a drought. Additionally, the confidence

intervals are also wider. This suggests that the effects of droughts are less persistent

in Asia as a whole.

The differences are more pronounced when considering the sub-sample results for

Africa. Here, the results are both very persistent and larger in magnitude, compared

to the other continents as well as the entire sample. The impact of a major (2 SD)

drought increases with every lag and only shows signs of dissipating somewhat after

8 years. In contrast, the 1.5 SD drought estimates do not dissipate at all after 11

years, and remain at an effect of 2 percent 11 years after a drought. Interestingly, the

impact of a 1.5 or 2 SD drought is approximately the same in Africa.

The results for the analysis in South and North America are found in Figure

C1.18. The results for South America are statistically insignificant with small point

estimates throughout all lags. This suggests that drought does not have an impact

on city growth in these countries. The estimates for the analysis of North American

cities are somewhat more complicated. While all the point estimates are statistically

insignificant, they are negative until lag 4, where they change sign after lag 6, and

become positive. However, the irregular pattern and the large confidence intervals

14There are a total of 6 cities in Oceania. This is largely because the SPEI data is not available
for many of the island states, or territories, in Oceania.
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(a) Africa.
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(b) Africa.
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(c) Asia.
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(d) Asia.

Figure 2: Estimates show the dynamic treatment effects of drought on city size. Panels
a)-b) show the effects for cities in Africa, by 1.5 and 2 SD droughts. Panels c)-d) show
the effects for cities in Asia, by 1.5 and 2 SD droughts. City and subregion-by-year fixed
effects are included in all estimations. Standard errors are clustered by ADM1-by-year and
city. Lines show the point estimates for each lag (or lead) and the shaded regions show 95%
confidence intervals. Normalized to the year before drought (βt=−1 = 0).

suggest that droughts have little impact on city growth in North American cities.

21



4.4 Relation to previous results

The results differ from previous research studying the effect of climate change or

weather shocks on urbanization, or built-up area. Barrios, Bertinelli, and Strobl

(2006) and Castells-Quintana, Krause, and McDermott (2021) find that less rainfall

or increased temperatures lead to increased urbanization, Henderson, Storeygard, and

Deichmann (2017) find no impact of drier conditions on urbanization in Sub-Saharan

Africa, and Chlouba, Mukim, and Zaveri (2023) find that drier conditions lead to

an increase in built-up area. Two main differences in this paper compared to the

mentioned studies may explain the differences in the results.

First, the two first-mentioned studies use country-level data. As Henderson,

Storeygard, and Deichmann (2017) points out, such data rely heavily on interpo-

lation between years. The analysis using such data also ignores within-country vari-

ation, which is often considerable. However, the same critique can be applied to

the district-level analysis in Henderson, Storeygard, and Deichmann (2017), who use

census data. These are infrequently collected and are only available for a subset of

countries in Sub-Saharan Africa. The definition of urbanization, and what constitutes

a city, also varies across countries.

Second, these studies focus mainly on the contemporary effects, apart from Hen-

derson, Storeygard, and Deichmann (2017). These effects may be misleading if effects

take time to materialize, or if there are temporal displacement effects, as outlined in

Section 3. Hence, my results are not directly comparable to the contemporaneous ef-

fects found in Barrios, Bertinelli, and Strobl (2006), Castells-Quintana, Krause, and

McDermott (2021), and Chlouba, Mukim, and Zaveri (2023).

5 Heterogeneity and channels

This section discusses the results based on heterogeneity analysis by income and

agricultural dependency, as well as a discussion regarding potential channels of the

results.
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5.1 Agriculture and income

The continent-wise analyses suggest large spatial heterogeneities in the effect of

droughts on city growth. The large and persistent impact of drought in Africa, the

smaller but also negative impact in Asia, and the lack of an effect in the Americas,

warrants further investigation into the relationship between drought and city growth.

Macroeconomic models of climatic effects have often emphasized the importance of

agriculture and income (Dell, Jones, & Olken, 2012). This has been corroborated

by more recent empirical studies on the relationship between, e.g., temperature and

GDP, for example, Burke, Hsiang, and Miguel (2015), Nath, Ramey, and Klenow

(2023), and Zappalà (2023), where the impact is larger on either agricultural GDP or

the agricultural sector.

Therefore, I investigate whether agriculture and income are potential channels

that could explain the differences in the impact between countries. I partition the

sample by income categories, as defined by the World Bank. I do the same using the

share of employment in agriculture and estimate Equation 2 separately by categories.

By country income I estimate Equation 2 separately for each income category

of countries, as defined by the World Bank; low-income, lower-middle-income, and

middle-income countries. The results of these analyses can be found in Figure 3.

The results for the low-income countries are presented in Figure 3a. The magni-

tude of the effect is larger than the effects in the entire sample, but only for the most

intense drought events (2 SD). Additionally, the effect is highly persistent, remain-

ing around 1.5 percent 11 years after drought exposure. For the medium-intensity

droughts (1.5 SD), I find close to no effect.

The results for the lower-middle-income countries are presented in Figure 3b.

These effects are highly significant, and large in magnitude. The effect of drought

exposure results in a steady decline in city size across both the 1.5 SD and 2 SD

droughts, although they show some sign of leveling off towards the end of 11 years.

The magnitudes are large: at around 2 percent for the 1.5 SD measure, and around

2.5 percent for the 2 SD measure.

Finally, Figure 3c shows the results for the middle-income countries. The esti-

mated effects are close to zero for the 1.5 SD droughts across all lags. The 2 SD
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(a) Low-income countries.
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(b) Lower-middle-income countries.
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(c) Middle-income countries.

Figure 3: Estimates show the dynamic treatment effects of drought on city size. Panel
a) shows the effects on cities in low-income countries, panel b) in lower-middle-income
countries, and panel c) in middle-income countries. Standard errors are clustered by ADM1-
by-year and city. Dashed lines show the point estimates for each lag (or lead) of a 1.5 SD
drought, and solid lines the estimates for a 2 SD drought. The shaded regions show 95%
confidence intervals. Normalized to the year before drought (βt=−1 = 0).

droughts have a positive effect after 6 years. However, the results are statistically

insignificant across all lags for both 1.5 and 2 SD droughts. In addition, the leads are

statistically significant for the 2 SD droughts, indicating that these results may not
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be interpreted as a causal effect.

Altogether, my findings suggest that the cities which are most impacted by lo-

cal droughts are cities in lower and lower-middle-income countries. Somewhat sur-

prisingly, the effect is not the largest in the poorest category of countries, i.e., the

low-income countries. However, this could be explained by the fact that certain nat-

ural resource-rich countries, e.g. Angola have higher levels of GDP while the general

population is poor.

By share of agricultural employment In order to better understand potential

driving forces behind the results, I examine whether cities in more agriculturally

dependent countries are more impacted compared to cities in less agriculturally de-

pendent countries. I proxy agricultural dependence using the agricultural share of

employment in 1992.

I divide the cities into three groups based on the distribution of agricultural em-

ployment share at the country-level, creating three terciles of the distribution. I

present the results from estimating Equation 2 for each of these sub-samples in Fig-

ure 4.

The largest effect is found in the third tercile, which are the cities in countries

with the highest share of employment in agriculture. In fact, the effect of the most

intense drought events, 2 SD, is almost 4 percent after 7 years and does not dissipate

substantially after 11 years, suggesting that the effect is both large and highly per-

sistent. Likewise, the 1.5 SD shows a steady decline in city size, resulting in a 2.2

percent decrease after 11 years.

The cities in the second most agriculturally dependent countries are also heavily

impacted by drought. While the results are larger than those of the global sample, the

effect for the 1.5 SD droughts is less persistent. While the effect is almost 1 percent

after 6-7 years, cities do recover after 11 years. However, the 2 SD droughts do not

show any sign of recovery and instead remain at 2 percent after 7 to 11 years.

The results for the cities least dependent on agriculture, the first tercile, are sta-

tistically insignificant across all lags, although they increase from lag 5 and onwards.

It should be noted that the number of cities (and observations) is unevenly dis-

tributed across sub-samples. However, despite the fact that the third tercile only has
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(a) Highest share, third tercile.
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(b) Middle share, second tercile.
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(c) Lowest share, first tercile.

Figure 4: Estimates show the dynamic treatment effects of drought on city size. Panel a)
shows the effects on cities in countries with the highest share of agricultural employment
(third tercile), panel b) on cities in the second tercile countries, panel c) shows the effects
on cities in the first tercile countries, the lowest share. Standard errors are clustered by
ADM1-by-year and city. Dashed lines show the point estimates for each lag (or lead) of a
1.5 SD drought, and solid lines the estimates for a 2 SD drought. The shaded regions show
95% confidence intervals. Normalized to the year before drought (βt=−1 = 0).

784 cities, it represents a population from 27 countries totaling hundreds of millions.

The results suggest that both country-level income and the agricultural share of
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the economic sector are important channels in understanding the magnitude of the

impact of drought on city growth. This is plausible, considering that agriculture is

heavily impacted by adverse weather events.

5.2 Potential mechanisms

What mechanisms could explain the results of this paper? My reduced-form analysis

calls for a certain degree of caution, as I am unable to pinpoint specific mechanisms

with certainty. In this section, I will, however, discuss some potential mechanisms.

An important driver of urbanization, and city growth, in developing countries is

rural-to-urban migration (Brueckner & Lall, 2015). I do not observe migration—there

does not exist high-frequency population data at the city-level for most of the world—

but my results are consistent with migration as a plausible explanation behind my

findings. City footprint growth, as measured by built-up area, is highly correlated

with measures of population. First, I show this using data of city populations in

Sub-Saharan collected by Jedwab and Storeygard (2022). In panel A, Figure C1.1,

I plot the log values of built-up area against the log values of city population. The

estimated correlation between the two measures is high, at 0.76. Second, I use data

from Schiavina, Freire, and MacManus (2019). These data are estimated, on a global

scale, using a combination of built-up area and administrative data. The correlation

is high, 0.85, which may partially be a result of the data being constructed using

built-up area as an input. This plot is found in panel B, Figure C1.1.

The strong correlation between population and built-up area may indicate that a

negative effect on city footprint could be associated with a negative effect on city pop-

ulation. As city population growth is driven partly by rural-to-urban migration, this

could suggest that migration toward cities is decreasing. An alternative explanation

could be that the data mainly captures built-up area in the form of non-residential

buildings. I argue that this explanation is unlikely for two reasons. First, built-up

area is often used in estimating population in the absence of other reliable data (Freire

et al., 2016). Second, the correlation between built-up area and population is high,

as shown previously in this paper.

If migration is negatively affected by droughts, it would be consistent with a model
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where households face credit and liquidity constraints which makes them less likely

to migrate. People in developing countries often face substantial risks and liquidity

constraints which may impact their decision to migrate, especially if moving requires

a substantial up-front cost (Kleemans, 2023). Liquidity constraints have been shown

to prevent migration in, for example, Bangladesh (Bryan, Chowdhury, & Mobarak,

2014), Indonesia (Bazzi, 2017), and China (Cai, 2020). In addition, my results echo

the model in Cattaneo and Peri (2016), where liquidity constraints are more binding

in poorer countries compared to richer countries.

The persistence of the results may be explained by household responses to shocks.

For example, people who choose not to migrate in one period may invest more in

agriculture, and forgo migration in subsequent periods. Nath, Ramey, and Klenow

(2023) finds that increasing temperatures in hotter and low-income areas may induce

additional specialization in agriculture, as a means to meet food demand under pro-

ductivity losses. Evidence from Peru shows a similar pattern, where farmers respond

to heat shocks by increasing their agricultural land and changing their product mix,

rather than migrating (Aragón, Oteiza, & Rud, 2021).

I emphasize that there are other potential mechanisms that could explain the

results. These include direct effects on mortality or fertility in cities, which could

cause their populations to decline, and therefore expand less. While droughts are

mostly damaging to the agricultural sector, cities may still be affected. If droughts

decrease economic growth, it could also lead to less urban expansion. However, this

does not necessarily preclude a migration channel, as rural-to-urban migration may

be more appealing during periods of urban economic growth.

6 Conclusion

This paper studies the effects of drought on the growth of cities. I find that drought

exposure leads to a large, negative, and persistent effect on the growth of cities.

Following a major drought, city growth is lower than it would have been compared

to a drought-free counterfactual. The effect lasts up to 11 years, suggesting that the

effects are persistent. The impact is largest in Africa and Asia, which host several

countries and regions undergoing rapid urbanization. I find that the most important
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predictor of where drought exposure will have a large effect is agricultural dependency,

as measured by the national share of employment in agriculture.

Together, these results suggest that adverse weather shocks, such as droughts, can

have an impact on the spatial allocation of people. The size of the effect varies across

sub-samples, but the cities in countries with a large agricultural sector remain 4 to

5 percent smaller after exposure to a local drought, compared to a counterfactual of

not having experienced a drought episode.

I utilize and build a novel data set to construct measures of the annual growth

of cities at the city-level. These data allow me to overcome some of the data con-

straints and limitations facing previous research, including Barrios, Bertinelli, and

Strobl (2006), Castells-Quintana, Krause, and McDermott (2021), and Henderson,

Storeygard, and Deichmann (2017), who find positive or null effects. I show that the

contemporaneous effects may be misleading, as they are either close to null effects or

positive, suggesting that delayed effects are important when studying the impact of

weather shocks on cities, and potentially on migration as well.

I am unable to speak directly on mechanisms in this paper. I show that city

growth, as measured by the growth in horizontal built-up area, is correlated with

population. Hence, a potential explanation of the results is that droughts in city

hinterlands lead to less rural-to-urban migration. However, there are other poten-

tial explanations that I cannot rule out in this paper. These could include a direct

economic effect on cities, which could lead to less construction of new urban areas.

Isolating the mechanisms would require a more structurally oriented analysis, which

could be an avenue for future work.

In the broader discussion of the effects of climate change, a prominent view argues

that climate change will lead to inevitable urbanization, putting pressure on already

strained cities. My results suggest that this is less of a concern for a large share of

cities, which are hindered rather than induced to grow. However, I note that these

results do not speak directly to other climate hazards that many people in developing

countries face, for example, cyclones and floods. These events could have a different

effect compared to that of droughts.

My findings have some policy implications. As climate change is expected to

increase the number and intensity of droughts, more could be done to help the rural
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and agricultural sector to cope with droughts. This might include technologies such

as irrigation, or cultivating other types of crops, which are the two main margins of

adaptation. The results also suggest that it may not be adverse weather shocks to

the agricultural sector which will increase internal climate migration.
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Appendices

A List of countries in sample

Afghanistan, Algeria, Angola, Argentina, Armenia, Azerbaijan, Bangladesh, Belize,

Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cambodia, Cameroon,

Central African Republic, Chad, Chile, China, Colombia, Costa Rica, Cote d’Ivoire,

Cuba, Democratic Republic of the Congo, Djibouti, Dominican Republic, Ecuador,

Egypt, El Salvador, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Georgia,

Ghana, Guatemala, Guinea, Guinea Bissau, Guyana, Haiti, Honduras, India, Indone-

sia, Iran, Iraq, Jamaica, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Laos, Lebanon,

Lesotho, Liberia, Libya, Madagascar, Malawi, Malaysia, Mali, Mauritania, Mex-

ico, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger,

Nigeria, North Korea, Pakistan, Palestine, Panama, Papua New Guinea, Paraguay,

Peru, Philippines, Republic of Congo, Rwanda, Senegal, Sierra Leone, Somalia, South

Africa, South Sudan, Sri Lanka, Sudan, Suriname, Swaziland, Syria, Tajikistan,

Tanzania, Thailand, Timor Leste, Togo, Tunisia, Turkey, Turkmenistan, Uganda,

Uruguay, Uzbekistan, Venezuela, Vietnam, Western Sahara, Yemen, Zambia, Zim-

babwe.

B Robustness specifications

Autoregressive distributed lag model I amend the main specification, Equation

2, to include a lag of the outcome variable, which results in the following equation:

∆ln(Yi,t) = ∆ln(Yi,t−1) +
11∑

l=−5

γlDi,t−l + αi + δst + εd,t (4)

which is the AR(1) model. I augment the model further by including two lags:

∆ln(Yi,t) = ∆ln(Yi,t−1) + ∆ln(Yi,t−2) +
11∑

l=−5

γlDi,t−l + αi + δst + εd,t (5)

which results in an AR(2) model.
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Local projections I amend Equation 2, following e.g. Colmer, Evans, and Shimshack

(2023) and Tran and Wilson (2020), and estimate the effect of droughts on city growth

for each time horizon h:

∆ln(Yi,t+h) = βhDi,t + αi + δst + εd,t (6)

where ∆ln(Yi,t+h) is the change in city growth in the year t + h, relative to the

year prior. The contemporaneous effect is captured by βh = 0 and the effect after 11

years is captured by βh = 11. These parameters all represent the dynamic treatment

effects.

Spatial lag model I amend Equation 2 to include both spatial and temporal lags,

following Hsiang (2016) and Hsiang and Jina (2014):

∆ln(Yi,t) =
11∑
l=0

11∑
π=0

{D[j|dist(i,j)=π],t−1γlπ}+ αi + δst + εd,t (7)

where D[j|dist(i,j)=π],t−1γlπ is the average drought exposure of all neighboring cities

j, within a distance π from city i at time t − l, where i is the city-hinterland where

the outcome is observed. dist(i, j) is the distance from i to j.

C Additional figures
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Figure C1.1: This figure shows the correlation between city population measures and
the data on city footprint used to construct annual city growth, WSF (Marconcini et al.,
2021). I plot the logarithm of the measures of city footprint (x-axis) against the logarithm
two different sources of city population (y-axis). The solid red line show the estimates of a
regression of the aforementioned measures. Panel A shows the results from comparing data
from Jedwab and Storeygard (2022), for the years 1990, 2000, and 2010 with WSF data
from the same years. Panel B shows the results from GHS Population (Schiavina, Freire,
& MacManus, 2019), for the years 1990, 2000, and 2015.
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Figure C1.2: Panel a) shows the delineation of the UNSD subregions for the countries
in the sample. Panel b) shows the delineation of the UNSD intermediate regions for the
countries in the sample.
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Figure C1.3: The figures show the distribution of city footprint growth rates. Panel A
shows the distribution for all observations in the data. Panel B shows the superimposed
distributions by income category. Panel C shows the superimposed distributions by agri-
cultural employment, where 1 is the first tercile (lowest share of agricultural employment),
and 3 is the third tercile (highest share).
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Figure C1.4: Panel a) shows the share of cities that experience a 1.5 SD drought in a
given year. Panel b) shows the share of cities that experience a 2 SD drought in a given
year.
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Figure C1.5: Each sub-figure shows the distribution of the yearly average pixel-level SPEI
values across the sample, calculated using data from (Vicente-Serrano et al., 2022), over the
main growing season, between 1980 and 1989. Only countries in the sample are displayed.
Higher values indicate drier conditions relative to a long term average, and lower values
indicate wetter conditions.
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Figure C1.6: Each sub-figure shows the distribution of the yearly average pixel-level SPEI
values across the sample, calculated using data from (Vicente-Serrano et al., 2022), over the
main growing season, between 1990 and 1999. Only countries in the sample are displayed.
Higher values indicate drier conditions relative to a long term average, and lower values
indicate wetter conditions.
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Figure C1.7: Each sub-figure shows the distribution of the yearly average pixel-level SPEI
values across the sample, calculated using data from (Vicente-Serrano et al., 2022), over the
main growing season, between 2000 and 2009. Only countries in the sample are displayed.
Higher values indicate drier conditions relative to a long term average, and lower values
indicate wetter conditions.
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Figure C1.8: Each sub-figure shows the distribution of the yearly average pixel-level SPEI
values across the sample, calculated using data from (Vicente-Serrano et al., 2022), over the
main growing season, between 2010 and 2020. Only countries in the sample are displayed.
Higher values indicate drier conditions relative to a long term average, and lower values
indicate wetter conditions.
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(a)

(b)

Figure C1.9: Panel a) shows the countries which are included in the sample, colored in
gray, and the points show each city. Panel b) shows the ADM1 regions of the countries
included in the sample, again colored gray.
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Figure C1.10: The histograms show the distributions of the estimated effect of a drought
on city growth after 7 years (β7) from estimating Equation 2 2,000 times using simulated
data, where drought conditions are randomly assigned across years. Panel a) shows the
results for 1.5 SD droughts, panel b) for 2 SD droughts. The solid red lines show the
estimated effect using real data. The dot-dashed, and dashed lines reflect the critical values
for a two-sided hypothesis test that the effect of a drought is zero at a 10 %, and 5 % level
of significance, respectively.
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(a) Intermediate region FE.
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(b) Winsorized.

Figure C1.11: Estimates show the dynamic treatment effects of drought on city size.
Panel a) shows the effects when replacing subregion-by-year fixed effects with intermediate-
by-year fixed effects. Panel b) shows the effects when city growth is winsorized at 1st/99th
percentiles using the specification in Equation 2. City fixed effects are included in all
estimations. Standard errors are clustered by ADM1-by-year and city. Dashed lines show
the point estimates for each lag (or lead) of a 1.5 SD drought, and solid lines the estimates
for a 2 SD drought. The shaded regions show 95% confidence intervals. Normalized to the
year before drought (βt=−1 = 0).
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(a) 250 kilometer cut-off.
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(b) 500 kilometer cut-off.

-.0
2

-.0
15

-.0
1

-.0
05

0
.0

05

Ef
fe

ct
 o

n 
ci

ty
 s

iz
e

 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
 

Years since drought

2 SD

 
Observations: 160740, No. of cities: 6999

(c) 250 kilometer cut-off.

-.0
2

-.0
15

-.0
1

-.0
05

0
.0

05

Ef
fe

ct
 o

n 
ci

ty
 s

iz
e

 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
 

Years since drought

2 SD

 
Observations: 160740, No. of cities: 6999

(d) 500 kilometer cut-off.

Figure C1.12: Estimates show the dynamic treatment effects of drought on city size.
Standard errors are estimated following Conley (1999), allowing for serial correlation up
to 20 years. Panels a) and b) show the results for a 1.5 SD drought, using a 250 and
500-kilometer cut-off respectively. Panels c) and d) show the results for a 2 SD drought,
using a 250 and 500-kilometer cut-off respectively. City and subregion-by-year fixed effects
are included in all estimations. Solid lines show point estimates at each lag (or lead) and
the shaded regions show 95% confidence intervals. Normalized to the year before drought
(βt=−1 = 0).
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(a) Calendar year.
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(b) SPEI-6.

Figure C1.13: Estimates show the dynamic treatment effects of drought on city size.
Panel a) shows the effects when using the entire calendar year to define drought exposure.
Panel b) shows the results of using SPEI-6 instead of SPEI-3. City and subregion-by-year
fixed effects are included in all estimations. Standard errors are clustered by ADM1-by-year
and city. Dashed lines show the point estimates for each lag (or lead) of a 1.5 SD drought,
and solid lines the estimates for a 2 SD drought. The shaded regions show 95% confidence
intervals. Normalized to the year before drought (βt=−1 = 0).
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Figure C1.14: Panels a) and b) show the results of estimating a spatial lag model as
specified in Equation 7, illustrating the potential spatial spillover effects of drought exposure.
Panels a) and b) show the effects of a drought on city i’s size. 0-100 kilometers is the drought
exposure measures used in the main results, e.g. 1. 100-200 is the effect on city i’s size from
droughts in cities within a 100-200 kilometer annuli, and 200-300 within a 200-300 kilometer
annuli. Panel a) shows the results for 1.5 SD droughts, and panel b) for 2 SD droughts.
Panel c) shows an example of the annuli used to construct the spatial lags, around the city
of Windhoek, Namibia, where the outer annuli represents the 200-300 kilometer distance.
The shaded area is 95 % confidence intervals.
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(a) 1.5 SD.
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(b) 2 SD.

Figure C1.15: Estimates show the dynamic treatment effects of drought on city size. Each
line shows the point estimates when including a different number of lags, from 3 to 11. I
include 5 leads in each estimation. Panel a) shows the results for a 1.5 SD drought, panel
b) a 2 SD drought. City and subregion-by-year fixed effects are included in all estimations.
Confidence intervals have been omitted. Normalized to the year before drought (βt=−1 = 0).
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(a) AR(1).
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(b) AR(2).

Figure C1.16: Estimates show the dynamic treatment effects of drought on city size. and
5. Estimates are the dynamic treatment effects of a drought on city size. Panel a) shows the
results of the AR(1) model, specified in Equation 4. Panel b) shows the results of the AR(2)
model, specified in Equation 5. City and subregion-by-year fixed effects are included in all
estimations. Standard errors are clustered by ADM1-by-year and city. Solid lines show
point estimates at each lag (or lead) and the shaded region show 95% confidence intervals
for a 2 SD drought. Normalized to the year before drought (βt=−1 = 0).
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(a) Local projections.
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(b) DC-DH estimator.

Figure C1.17: Estimates show the dynamic treatment effects of a 2 SD drought on city
size. Panel a) shows the results using the local projections specifications as defined in
Equation 6. Standard errors are clustered by ADM1-by-year and city. Solid lines show
point estimates at each lag (or lead) and the shaded region show 95% confidence intervals.
Normalized to the year before a drought (βt=−1 = 0). Panel b) shows the results using the
de Chaisemartin and d’Haultfoeuille (2022) estimator. Solid lines show point estimates at
each lag (or lead) and the shaded region show 95% confidence intervals. Normalized to the
year before treatment changes (βt=0 = 0).
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(a) South America.
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(b) North America.

Figure C1.18: Estimates based on model in Equation 2. Estimates are the dynamic
treatment effects of a drought on city size. Panel a) shows the effects on cities in South
America. Panel b) shows the effects on cities in North America. City and subregion-by-year
fixed effects are included in all estimations. Standard errors are clustered by ADM1-by-year
and city. Dashed lines show the point estimates for each lag (or lead) of a 1.5 SD drought,
and solid lines the estimates for a 2 SD drought. The shaded regions show 95% confidence
intervals. Normalized to the year before drought (βt=−1 = 0).
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Mean Median SD

Entire sample

City pop. 2015 394,127 138,913 1,294,501

GDP per capita 2207 1097 2665

Percent urbanized 42.6 35.9 18.26

Agricultural employment share 52.8 58.5 17.0

City growth (percent) 0.03 0.02 0.05

Africa

City pop. 2015 293,870 117,559 878,728

GDP per capita 1259 627 1535

Percent urbanized 36.6 36.5 14.9

Agricultural employment share 58.3 55.2 18.6

City growth (percent) 0.03 0.02 0.07

Asia

City pop. 2015 425,490 150,028 1,403,754

GDP per capita 1863 1023 2200

Percent urbanized 38.4 32.8 12.8

Agricultural employment share 56.6 58.5 10.4

City growth (percent) 0.04 0.03 0.04

North America

City pop. 2015 451,203 143,241 1,421,678

GDP per capita 5258 5276 3308

Percent urbanized 65.8 73.7 13.7

Agricultural employment share 29.5 25.9 7.9

City growth (percent) 0.03 0.02 0.04

South America

City pop. 2015 418,154 125,225 135,0774

GDP per capita 5969 4981 3647

Percent urbanized 80.1 82.2 8.4

Agricultural employment share 20.1 19.2 7.2

City growth (percent) 0.03 0.02 0.03

Oceania

City pop. 2015 132,205 98,267 71,281

GDP per capita 1501 1236 897

Percent urbanized 17.0 13.2 10.4

Agricultural employment share 37.0 37.8 7.0

City growth (percent) 0.01 0.01 0.01

Table D1.1: Descriptive statistics of the entire sample and by continents.
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1 SD 1.5 SD 2 SD

City growth (%) City growth (%) City growth (%)

Year -5 -0.00218∗∗ -0.00262∗ -0.00127
(-2.88) (-2.22) (-0.57)

Year -4 -0.00105 -0.00105 -0.00115
(-1.76) (-1.06) (-0.60)

Year -3 -0.000953∗ -0.00127 -0.00195
(-1.99) (-1.66) (-1.28)

Year -2 -0.000712∗ -0.000877 -0.0000230
(-2.11) (-1.77) (-0.03)

Year -1 0 0 0
(.) (.) (.)

Year 0 0.00116∗∗∗ 0.000801 0.000672
(3.40) (1.72) (0.68)

Year 1 0.000818 -0.000416 -0.000389
(1.64) (-0.59) (-0.26)

Year 2 0.000435 -0.00211∗ -0.00347
(0.68) (-2.24) (-1.74)

Year 3 0.000243 -0.00377∗∗ -0.00694∗∗

(0.31) (-3.26) (-2.84)
Year 4 0.000249 -0.00473∗∗∗ -0.00921∗∗

(0.27) (-3.47) (-3.18)
Year 5 0.00104 -0.00392∗ -0.00865∗

(1.00) (-2.44) (-2.55)
Year 6 0.000352 -0.00516∗∗ -0.00981∗

(0.30) (-2.84) (-2.56)
Year 7 0.000198 -0.00607∗∗ -0.0124∗∗

(0.15) (-3.02) (-2.96)
Year 8 0.000975 -0.00486∗ -0.0104∗

(0.70) (-2.17) (-2.24)
Year 9 0.00195 -0.00295 -0.00829

(1.27) (-1.20) (-1.67)
Year 10 0.00218 -0.00175 -0.00758

(1.32) (-0.66) (-1.45)
Year 11 0.00168 -0.00200 -0.00729

(0.94) (-0.71) (-1.32)
Observations 160,740 160,740 160,740
Cities 6,999 6,999 6,999
Adjusted R-squared 0.3460 0.3464 0.3459

t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table D1.2: Event study estimates based on model in Equation 2. Estimates shown are the
dynamic treatment effects of drought exposure, by levels of intensity, on city growth. City and
subregion-by-year fixed effects are included in all estimations. Standard errors are clustered by
ADM1-by-year and city. Normalized to the year before drought shocks, β−1 = 0.
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